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deepgp-package Package deepgp

Description

Performs Bayesian posterior inference for deep Gaussian processes following Sauer, Gramacy,
and Higdon (2023). See Sauer (2023) for comprehensive methodological details and https://
bitbucket.org/gramacylab/deepgp-ex/ for a variety of coding examples. Models are trained
through MCMC including elliptical slice sampling of latent Gaussian layers and Metropolis-Hastings
sampling of kernel hyperparameters. Vecchia-approximation for faster computation is implemented
following Sauer, Cooper, and Gramacy (2023). Optional monotonic warpings are implemented fol-
lowing Barnett et al. (2024). Downstream tasks include sequential design through active learning

https://bitbucket.org/gramacylab/deepgp-ex/
https://bitbucket.org/gramacylab/deepgp-ex/
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Cohn/integrated mean squared error (ALC/IMSE; Sauer, Gramacy, and Higdon, 2023), optimiza-
tion through expected improvement (EI; Gramacy, Sauer, and Wycoff, 2022), and contour location
through entropy (Booth, Renganathan, and Gramacy, 2024). Models extend up to three layers deep;
a one layer model is equivalent to typical Gaussian process regression. Incorporates OpenMP and
SNOW parallelization and utilizes C/C++ under the hood.

Important Functions

• fit_one_layer: conducts MCMC sampling of hyperparameters for a one layer GP

• fit_two_layer: conducts MCMC sampling of hyperparameters and hidden layer for a two
layer deep GP

• fit_three_layer: conducts MCMC sampling of hyperparameters and hidden layers for a
three layer deep GP

• continue: collects additional MCMC samples

• trim: cuts off burn-in and optionally thins samples

• predict: calculates posterior mean and variance over a set of input locations (optionally
calculates EI or entropy)

• plot: produces trace plots, hidden layer plots, and posterior predictive plots

• ALC: calculates active learning Cohn over set of input locations using reference grid

• IMSE: calculates integrated mean-squared error over set of input locations

Author(s)

Annie S. Booth <annie_booth@ncsu.edu>

References

Sauer, A. (2023). Deep Gaussian process surrogates for computer experiments. *Ph.D. Dis-
sertation, Department of Statistics, Virginia Polytechnic Institute and State University.* http:
//hdl.handle.net/10919/114845

Sauer, A., Gramacy, R.B., & Higdon, D. (2023). Active learning for deep Gaussian process surro-
gates. *Technometrics, 65,* 4-18. arXiv:2012.08015

Sauer, A., Cooper, A., & Gramacy, R. B. (2023). Vecchia-approximated deep Gaussian processes
for computer experiments. *Journal of Computational and Graphical Statistics, 32*(3), 824-837.
arXiv:2204.02904

Gramacy, R. B., Sauer, A. & Wycoff, N. (2022). Triangulation candidates for Bayesian opti-
mization. *Advances in Neural Information Processing Systems (NeurIPS), 35,* 35933-35945.
arXiv:2112.07457

Booth, A., Renganathan, S. A. & Gramacy, R. B. (2024). Contour location for reliability in air-
foil simulation experiments using deep Gaussian processes. *In Review.* arXiv:2308.04420

Barnett, S., Beesley, L. J., Booth, A. S., Gramacy, R. B., & Osthus D. (2024). Monotonic warpings
for additive and deep Gaussian processes. *In Review.* arXiv:2408.01540

http://hdl.handle.net/10919/114845
http://hdl.handle.net/10919/114845
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Examples

# See vignette, ?fit_one_layer, ?fit_two_layer, ?fit_three_layer,
# ?ALC, or ?IMSE for examples
# Many more examples including real-world computer experiments are available at:
# https://bitbucket.org/gramacylab/deepgp-ex/

ALC Active Learning Cohn for Sequential Design

Description

Acts on a gp, dgp2, or dgp3 object. Current version requires squared exponential covariance (cov
= "exp2"). Calculates ALC over the input locations x_new using specified reference grid. If no
reference grid is specified, x_new is used as the reference. Optionally utilizes SNOW parallelization.
User should select the point with the highest ALC to add to the design.

Usage

ALC(object, x_new, ref, cores)

## S3 method for class 'gp'
ALC(object, x_new = NULL, ref = NULL, cores = 1)

## S3 method for class 'dgp2'
ALC(object, x_new = NULL, ref = NULL, cores = 1)

## S3 method for class 'dgp3'
ALC(object, x_new = NULL, ref = NULL, cores = 1)

Arguments

object object of class gp, dgp2, or dgp3

x_new matrix of possible input locations, if object has been run through predict the
previously stored x_new is used

ref optional reference grid for ALC approximation, if ref = NULL then x_new is
used

cores number of cores to utilize in parallel, by default no parallelization is used

Details

Not yet implemented for Vecchia-approximated fits or Matern kernels.

All iterations in the object are used in the calculation, so samples should be burned-in. Thinning
the samples using trim will speed up computation. This function may be used in two ways:

• Option 1: called on an object with only MCMC iterations, in which case x_new must be
specified
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• Option 2: called on an object that has been predicted over, in which case the x_new from
predict is used

In Option 2, it is recommended to set store_latent = TRUE for dgp2 and dgp3 objects so latent
mappings do not have to be re-calculated. Through predict, the user may specify a mean mapping
(mean_map = TRUE) or a full sample from the MVN distribution over w_new (mean_map = FALSE).
When the object has not yet been predicted over (Option 1), the mean mapping is used.

SNOW parallelization reduces computation time but requires more memory storage. C code derived
from the "laGP" package (Robert B Gramacy and Furong Sun).

Value

list with elements:

• value: vector of ALC values, indices correspond to x_new

• time: computation time in seconds

References

Sauer, A., Gramacy, R.B., & Higdon, D. (2023). Active learning for deep Gaussian process surro-
gates. *Technometrics, 65,* 4-18. arXiv:2012.08015

Seo, S, M Wallat, T Graepel, and K Obermayer. 2000. Gaussian Process Regression: Active Data
Selection and Test Point Rejection. In Mustererkennung 2000, 2734. New York, NY: SpringerVer-
lag.

Gramacy, RB and F Sun. (2016). laGP: Large-Scale Spatial Modeling via Local Approximate
Gaussian Processes in R. Journal of Statistical Software 72 (1), 1-46. doi:10.18637/jss.v072.i01

Examples

# Additional examples including real-world computer experiments are available at:
# https://bitbucket.org/gramacylab/deepgp-ex/

# --------------------------------------------------------
# Example 1: toy step function, runs in less than 5 seconds
# --------------------------------------------------------

f <- function(x) {
if (x <= 0.4) return(-1)
if (x >= 0.6) return(1)
if (x > 0.4 & x < 0.6) return(10*(x-0.5))

}

x <- seq(0.05, 0.95, length = 7)
y <- sapply(x, f)
x_new <- seq(0, 1, length = 100)

# Fit model and calculate ALC
fit <- fit_two_layer(x, y, nmcmc = 100, cov = "exp2")
fit <- trim(fit, 50)
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fit <- predict(fit, x_new, cores = 1, store_latent = TRUE)
alc <- ALC(fit)

# --------------------------------------------------------
# Example 2: damped sine wave
# --------------------------------------------------------

f <- function(x) {
exp(-10*x) * (cos(10*pi*x - 1) + sin(10*pi*x - 1)) * 5 - 0.2

}

# Training data
x <- seq(0, 1, length = 30)
y <- f(x) + rnorm(30, 0, 0.05)

# Testing data
xx <- seq(0, 1, length = 100)
yy <- f(xx)

plot(xx, yy, type = "l")
points(x, y, col = 2)

# Conduct MCMC (can replace fit_two_layer with fit_one_layer/fit_three_layer)
fit <- fit_two_layer(x, y, D = 1, nmcmc = 2000, cov = "exp2")
plot(fit)
fit <- trim(fit, 1000, 2)

# Option 1 - calculate ALC from MCMC iterations
alc <- ALC(fit, xx)

# Option 2 - calculate ALC after predictions
fit <- predict(fit, xx, cores = 1, store_latent = TRUE)
alc <- ALC(fit)

# Visualize fit
plot(fit)
par(new = TRUE) # overlay ALC
plot(xx, alc$value, type = 'l', lty = 2, axes = FALSE, xlab = '', ylab = '')

# Select next design point
x_new <- xx[which.max(alc$value)]

continue Continues MCMC sampling
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Description

Acts on a gp, gpvec, dgp2, dgp2vec, dgp3, or dgp3vec object. Continues MCMC sampling of
hyperparameters and hidden layers using settings from the original object. Appends new samples
to existing samples. When vecchia = TRUE, this function provides the option to update Vecchia
ordering/conditioning sets based on latent layer warpings through the specification of re_approx =
TRUE.

Usage

continue(object, new_mcmc, verb, re_approx, ...)

## S3 method for class 'gp'
continue(object, new_mcmc = 1000, verb = TRUE, ...)

## S3 method for class 'dgp2'
continue(object, new_mcmc = 1000, verb = TRUE, ...)

## S3 method for class 'dgp3'
continue(object, new_mcmc = 1000, verb = TRUE, ...)

## S3 method for class 'gpvec'
continue(object, new_mcmc = 1000, verb = TRUE, re_approx = FALSE, ...)

## S3 method for class 'dgp2vec'
continue(object, new_mcmc = 1000, verb = TRUE, re_approx = FALSE, ...)

## S3 method for class 'dgp3vec'
continue(object, new_mcmc = 1000, verb = TRUE, re_approx = FALSE, ...)

Arguments

object object from fit_one_layer, fit_two_layer, or fit_three_layer

new_mcmc number of new MCMC iterations to conduct and append

verb logical indicating whether to print iteration progress

re_approx logical indicating whether to re-randomize the ordering and update Vecchia
nearest-neighbor conditioning sets (only for fits with vecchia = TRUE)

... N/A

Details

See fit_one_layer, fit_two_layer, or fit_three_layer for details on MCMC. The resulting
object will have nmcmc equal to the previous nmcmc plus new_mcmc. It is recommended to start an
MCMC fit then investigate trace plots to assess burn-in. The primary use of this function is to gather
more MCMC iterations in order to obtain burned-in samples.

Specifying re_approx = TRUE updates random orderings and nearest-neighbor conditioning sets
(only for vecchia = TRUE fits). In one-layer, there is no latent warping but the Vecchia approxima-
tion is still re-randomized and nearest-neighbors are adjusted accordingly. In two- and three-layers,
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the latest samples of hidden layers are used to update nearest-neighbors. If you update the Vecchia
approximation, you should later remove previous samples (updating the approximation effectively
starts a new chain). When re_approx = FALSE the previous orderings and conditioning sets are
used (maintaining the continuity of the previous chain).

Value

object of the same class with the new iterations appended

Examples

# See ?fit_two_layer for an example

crps Calculates CRPS

Description

Calculates continuous ranked probability score (lower CRPS indicate better fits, better uncertainty
quantification).

Usage

crps(y, mu, s2)

Arguments

y response vector

mu predicted mean

s2 predicted point-wise variances

References

Gneiting, T, and AE Raftery. 2007. Strictly Proper Scoring Rules, Prediction, and Estimation.
Journal of the American Statistical Association 102 (477), 359-378.

Examples

# Additional examples including real-world computer experiments are available at:
# https://bitbucket.org/gramacylab/deepgp-ex/
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fit_one_layer MCMC sampling for one layer GP

Description

Conducts MCMC sampling of hyperparameters for a one layer GP. Length scale parameter theta
governs the strength of the correlation and nugget parameter g governs noise. In Matern covariance,
v governs smoothness.

Usage

fit_one_layer(
x,
y,
nmcmc = 10000,
sep = FALSE,
verb = TRUE,
g_0 = 0.001,
theta_0 = 0.1,
true_g = NULL,
settings = NULL,
cov = c("matern", "exp2"),
v = 2.5,
vecchia = FALSE,
m = min(25, length(y) - 1),
ordering = NULL

)

Arguments

x vector or matrix of input locations

y vector of response values

nmcmc number of MCMC iterations

sep logical indicating whether to use separable (sep = TRUE) or isotropic (sep =
FALSE) lengthscales

verb logical indicating whether to print iteration progress

g_0 initial value for g

theta_0 initial value for theta

true_g if true nugget is known it may be specified here (set to a small value to make fit
deterministic). Note - values that are too small may cause numerical issues in
matrix inversions.

settings hyperparameters for proposals and priors (see details)

cov covariance kernel, either Matern or squared exponential ("exp2")

v Matern smoothness parameter (only used if cov = "matern")
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vecchia logical indicating whether to use Vecchia approximation

m size of Vecchia conditioning sets (only used if vecchia = TRUE)

ordering optional ordering for Vecchia approximation, must correspond to rows of x, de-
faults to random

Details

Utilizes Metropolis Hastings sampling of the length scale and nugget parameters with proposals
and priors controlled by settings. When true_g is set to a specific value, the nugget is not esti-
mated. When vecchia = TRUE, all calculations leverage the Vecchia approximation with specified
conditioning set size m. Vecchia approximation is only implemented for cov = "matern".

NOTE on OpenMP: The Vecchia implementation relies on OpenMP parallelization for efficient
computation. This function will produce a warning message if the package was installed without
OpenMP (this is the default for CRAN packages installed on Apple machines). To set up OpenMP
parallelization, download the package source code and install using the gcc/g++ compiler.

Proposals for g and theta follow a uniform sliding window scheme, e.g.

g_star <- runif(1, l * g_t / u, u * g_t / l),

with defaults l = 1 and u = 2 provided in settings. To adjust these, set settings = list(l =
new_l, u = new_u). Priors on g and theta follow Gamma distributions with shape parameters
(alpha) and rate parameters (beta) controlled within the settings list object. Defaults have been
updated with package version 1.1.3. Default priors differ for noisy/deterministic settings and depend
on whether monowarp = TRUE. All default values are visible in the internal deepgp:::check_settings
function. These priors are designed for x scaled to [0, 1] and y scaled to have mean 0 and variance
1. These may be adjusted using the settings input.

The output object of class gp is designed for use with continue, trim, and predict.

Value

a list of the S3 class gp or gpvec with elements:

• x: copy of input matrix

• y: copy of response vector

• nmcmc: number of MCMC iterations

• settings: copy of proposal/prior settings

• v: copy of Matern smoothness parameter (v = 999 indicates cov = "exp2")

• g: vector of MCMC samples for g

• theta: vector of MCMC samples for theta

• tau2: vector of MLE estimates for tau2 (scale parameter)

• ll: vector of MVN log likelihood for each Gibbs iteration

• time: computation time in seconds
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References

Sauer, A. (2023). Deep Gaussian process surrogates for computer experiments. *Ph.D. Disserta-
tion, Department of Statistics, Virginia Polytechnic Institute and State University.*

Sauer, A., Gramacy, R.B., & Higdon, D. (2023). Active learning for deep Gaussian process surro-
gates. *Technometrics, 65,* 4-18. arXiv:2012.08015

Sauer, A., Cooper, A., & Gramacy, R. B. (2023). Vecchia-approximated deep Gaussian processes
for computer experiments. *Journal of Computational and Graphical Statistics, 32*(3), 824-837.
arXiv:2204.02904

Examples

# Additional examples including real-world computer experiments are available at:
# https://bitbucket.org/gramacylab/deepgp-ex/

# Booth function (inspired by the Higdon function)
f <- function(x) {

i <- which(x <= 0.58)
x[i] <- sin(pi * x[i] * 6) + cos(pi * x[i] * 12)
x[-i] <- 5 * x[-i] - 4.9
return(x)

}

# Training data
x <- seq(0, 1, length = 25)
y <- f(x)

# Testing data
xx <- seq(0, 1, length = 200)
yy <- f(xx)

plot(xx, yy, type = "l")
points(x, y, col = 2)

# Example 1: full model (nugget fixed)
fit <- fit_one_layer(x, y, nmcmc = 2000, true_g = 1e-6)
plot(fit)
fit <- trim(fit, 1000, 2)
fit <- predict(fit, xx, cores = 1)
plot(fit)

# Example 2: full model (nugget estimated, EI calculated)
fit <- fit_one_layer(x, y, nmcmc = 2000)
plot(fit)
fit <- trim(fit, 1000, 2)
fit <- predict(fit, xx, cores = 1, EI = TRUE)
plot(fit)
par(new = TRUE) # overlay EI
plot(xx[order(xx)], fit$EI[order(xx)], type = 'l', lty = 2,
axes = FALSE, xlab = '', ylab = '')
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# Example 3: Vecchia approximated model (nugget estimated)
fit <- fit_one_layer(x, y, nmcmc = 2000, vecchia = TRUE, m = 10)
plot(fit)
fit <- trim(fit, 1000, 2)
fit <- predict(fit, xx, cores = 1)
plot(fit)

fit_three_layer MCMC sampling for three layer deep GP

Description

Conducts MCMC sampling of hyperparameters, hidden layer z, and hidden layer w for a three layer
deep GP. Separate length scale parameters theta_z, theta_w, and theta_y govern the correlation
strength of the inner layer, middle layer, and outer layer respectively. Nugget parameter g governs
noise on the outer layer. In Matern covariance, v governs smoothness.

Usage

fit_three_layer(
x,
y,
nmcmc = 10000,
D = ifelse(is.matrix(x), ncol(x), 1),
verb = TRUE,
w_0 = NULL,
z_0 = NULL,
g_0 = 0.001,
theta_y_0 = 0.1,
theta_w_0 = 0.1,
theta_z_0 = 0.1,
true_g = NULL,
settings = NULL,
cov = c("matern", "exp2"),
v = 2.5,
vecchia = FALSE,
m = min(25, length(y) - 1),
ordering = NULL

)

Arguments

x vector or matrix of input locations

y vector of response values
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nmcmc number of MCMC iterations

D integer designating dimension of hidden layers, defaults to dimension of x

verb logical indicating whether to print iteration progress

w_0 initial value for hidden layer w (must be matrix of dimension nrow(x) by D or
dimension nrow(x) - 1 by D). Defaults to the identity mapping.

z_0 initial value for hidden layer z (must be matrix of dimension nrow(x) by D or
dimension nrow(x) - 1 by D). Defaults to the identity mapping.

g_0 initial value for g

theta_y_0 initial value for theta_y (length scale of outer layer)

theta_w_0 initial value for theta_w (length scale of middle layer), may be single value or
vector of length D

theta_z_0 initial value for theta_z (length scale of inner layer), may be single value or
vector of length D

true_g if true nugget is known it may be specified here (set to a small value to make fit
deterministic). Note - values that are too small may cause numerical issues in
matrix inversions.

settings hyperparameters for proposals and priors (see details)

cov covariance kernel, either Matern or squared exponential ("exp2")

v Matern smoothness parameter (only used if cov = "matern")

vecchia logical indicating whether to use Vecchia approximation

m size of Vecchia conditioning sets (only used if vecchia = TRUE)

ordering optional ordering for Vecchia approximation, must correspond to rows of x, de-
faults to random, is applied to x, w, and z

Details

pmx = TRUE option not yet implemented for three-layer DGP.

Maps inputs x through hidden layer z then hidden layer w to outputs y. Conducts sampling of the
hidden layers using Elliptical Slice sampling. Utilizes Metropolis Hastings sampling of the length
scale and nugget parameters with proposals and priors controlled by settings. When true_g is
set to a specific value, the nugget is not estimated. When vecchia = TRUE, all calculations leverage
the Vecchia approximation with specified conditioning set size m. Vecchia approximation is only
implemented for cov = "matern".

NOTE on OpenMP: The Vecchia implementation relies on OpenMP parallelization for efficient
computation. This function will produce a warning message if the package was installed without
OpenMP (this is the default for CRAN packages installed on Apple machines). To set up OpenMP
parallelization, download the package source code and install using the gcc/g++ compiler.

Proposals for g, theta_y, theta_w, and theta_z follow a uniform sliding window scheme, e.g.

g_star <- runif(1, l * g_t / u, u * g_t / l),

with defaults l = 1 and u = 2 provided in settings. To adjust these, set settings = list(l =
new_l, u = new_u). Priors on g, theta_y, theta_w, and theta_z follow Gamma distributions with
shape parameters (alpha) and rate parameters (beta) controlled within the settings list object.
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Defaults have been updated with package version 1.1.3. Default priors differ for noisy/deterministic
settings and depend on whether monowarp = TRUE. All default values are visible in the internal
deepgp:::check_settings function. These priors are designed for x scaled to [0, 1] and y scaled
to have mean 0 and variance 1. These may be adjusted using the settings input.

In the current version, the three-layer does not have any equivalent setting for monowarp = TRUE or
pmx = TRUE as in fit_two_layer.

When w_0 = NULL and/or z_0 = NULL, the hidden layers are initialized at x (i.e. the identity map-
ping). The default prior mean of the inner hidden layer z is zero, but may be adjusted to x using
settings = list(z_prior_mean = x). The prior mean of the middle hidden layer w is set at zero is
is not user adjustable. If w_0 and/or z_0 is of dimension nrow(x) - 1 by D, the final row is predicted
using kriging. This is helpful in sequential design when adding a new input location and starting
the MCMC at the place where the previous MCMC left off.

The output object of class dgp3 or dgp3vec is designed for use with continue, trim, and predict.

Value

a list of the S3 class dgp3 or dgp3vec with elements:

• x: copy of input matrix

• y: copy of response vector

• nmcmc: number of MCMC iterations

• settings: copy of proposal/prior settings

• v: copy of Matern smoothness parameter (v = 999 indicates cov = "exp2")

• g: vector of MCMC samples for g

• theta_y: vector of MCMC samples for theta_y (length scale of outer layer)

• theta_w: matrix of MCMC samples for theta_w (length scale of middle layer)

• theta_z: matrix of MCMC samples for theta_z (length scale of inner layer)

• tau2: vector of MLE estimates for tau2 (scale parameter of outer layer)

• w: list of MCMC samples for middle hidden layer w

• z: list of MCMC samples for inner hidden layer z

• ll: vector of MVN log likelihood of the outer layer for reach Gibbs iteration

• time: computation time in seconds

References

Sauer, A. (2023). Deep Gaussian process surrogates for computer experiments. *Ph.D. Disserta-
tion, Department of Statistics, Virginia Polytechnic Institute and State University.*

Sauer, A., Gramacy, R.B., & Higdon, D. (2023). Active learning for deep Gaussian process surro-
gates. *Technometrics, 65,* 4-18. arXiv:2012.08015

Sauer, A., Cooper, A., & Gramacy, R. B. (2023). Vecchia-approximated deep Gaussian processes
for computer experiments. *Journal of Computational and Graphical Statistics, 32*(3), 824-837.
arXiv:2204.02904
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Examples

# Additional examples including real-world computer experiments are available at:
# https://bitbucket.org/gramacylab/deepgp-ex/

# G function in 2 dimensions (https://www.sfu.ca/~ssurjano/gfunc.html)
f <- function(xx, a = (c(1:length(xx)) - 1) / 2) {

new1 <- abs(4 * xx - 2) + a
new2 <- 1 + a
prod <- prod(new1 / new2)
return((prod - 1) / 0.86)

}

# Training data
d <- 2
n <- 30
x <- matrix(runif(n * d), ncol = d)
y <- apply(x, 1, f)

# Testing data
n_test <- 500
xx <- matrix(runif(n_test * d), ncol = d)
yy <- apply(xx, 1, f)

i <- interp::interp(xx[, 1], xx[, 2], yy)
image(i, col = heat.colors(128))
contour(i, add = TRUE)
contour(i, level = -0.5, col = 4, add = TRUE) # potential failure limit
points(x)

# Example 1: full model (nugget estimated, entropy calculated)
fit <- fit_three_layer(x, y, nmcmc = 2000)
plot(fit)
fit <- trim(fit, 1000, 2)
fit <- predict(fit, xx, entropy_limit = -0.5, cores = 1)
plot(fit)
i <- interp::interp(xx[, 1], xx[, 2], fit$entropy)
image(i, col = heat.colors(128), main = "Entropy")

# Example 2: Vecchia approximated model (nugget fixed)
# (Vecchia approximation is faster for larger data sizes)
fit <- fit_three_layer(x, y, nmcmc = 2000, vecchia = TRUE,

m = 10, true_g = 1e-6)
plot(fit)
fit <- trim(fit, 1000, 2)
fit <- predict(fit, xx, cores = 1)
plot(fit)

fit_two_layer MCMC sampling for two layer deep GP
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Description

Conducts MCMC sampling of hyperparameters and hidden layer w for a two layer deep GP. Separate
length scale parameters theta_w and theta_y govern the correlation strength of the hidden layer
and outer layer respectively. Nugget parameter g governs noise on the outer layer. In Matern
covariance, v governs smoothness.

Usage

fit_two_layer(
x,
y,
nmcmc = 10000,
D = ifelse(is.matrix(x), ncol(x), 1),
monowarp = FALSE,
pmx = FALSE,
verb = TRUE,
w_0 = NULL,
g_0 = 0.001,
theta_y_0 = 0.1,
theta_w_0 = 0.1,
true_g = NULL,
settings = NULL,
cov = c("matern", "exp2"),
v = 2.5,
vecchia = FALSE,
m = min(25, length(y) - 1),
ordering = NULL

)

Arguments

x vector or matrix of input locations

y vector of response values

nmcmc number of MCMC iterations

D integer designating dimension of hidden layer, defaults to dimension of x

monowarp indicates whether warpings should be forced to be monotonic. Input may be a
matrix of grid points (or a vector which will be applied to every dimension) for
interpolation of the cumulative sum, an integer specifying the number of grid
points to use over the range [0, 1], or simply the boolean TRUE which triggers 50
grid points over the range [0, 1].

pmx "prior mean x", logical indicating whether w should have prior mean of x (TRUE,
requires D = ncol(x)) or prior mean zero (FALSE). pmx = TRUE is recommended
for higher dimensions. May be numeric, in which case the specified argument
is used as the scale (tau2) in the latent w layer (default is 1). Small values
encourage identity mappings.

verb logical indicating whether to print iteration progress



fit_two_layer 17

w_0 initial value for hidden layer w (must be matrix of dimension nrow(x) by D or
dimension nrow(x) - 1 by D). Defaults to the identity mapping.

g_0 initial value for g

theta_y_0 initial value for theta_y (length scale of outer layer)

theta_w_0 initial value for theta_w (length scale of inner layer), may be single value or
vector of length D

true_g if true nugget is known it may be specified here (set to a small value to make fit
deterministic). Note - values that are too small may cause numerical issues in
matrix inversions.

settings hyperparameters for proposals and priors (see details)

cov covariance kernel, either Matern or squared exponential ("exp2")

v Matern smoothness parameter (only used if cov = "matern")

vecchia logical indicating whether to use Vecchia approximation

m size of Vecchia conditioning sets (only used if vecchia = TRUE)

ordering optional ordering for Vecchia approximation, must correspond to rows of x, de-
faults to random, is applied to x and w

Details

Maps inputs x through hidden layer w to outputs y. Conducts sampling of the hidden layer using
Elliptical Slice sampling. Utilizes Metropolis Hastings sampling of the length scale and nugget
parameters with proposals and priors controlled by settings. When true_g is set to a specific
value, the nugget is not estimated. When vecchia = TRUE, all calculations leverage the Vecchia
approximation with specified conditioning set size m. Vecchia approximation is only implemented
for cov = "matern".

When monowarp = TRUE, each input dimension is warped separately and monotonically. This re-
quires D = ncol(x). Monotonic warpings trigger separable lengthscales on the outer layer (theta_y).
As a default, monotonic warpings use the reference grid: seq(0, 1, length = 50). The grid size
may be controlled by passing a numeric integer to monowarp (i.e., monowarp = 100 uses the grid
seq(0, 1, length = 100)). Alternatively, any user-specified grid may be passed as the argument
to monowarp.

When pmx = TRUE, the prior on the latent layer is set at x (rather than the default of zero). This
requires D = ncol(x). If pmx is set to a numeric value, then that value is used as the scale parameter
on the latent layer. Specifying a small value here encourages an identity mapping.

NOTE on OpenMP: The Vecchia implementation relies on OpenMP parallelization for efficient
computation. This function will produce a warning message if the package was installed without
OpenMP (this is the default for CRAN packages installed on Apple machines). To set up OpenMP
parallelization, download the package source code and install using the gcc/g++ compiler.

Proposals for g, theta_y, and theta_w follow a uniform sliding window scheme, e.g.

g_star <- runif(1, l * g_t / u, u * g_t / l),

with defaults l = 1 and u = 2 provided in settings. To adjust these, set settings = list(l =
new_l, u = new_u). Priors on g, theta_y, and theta_w follow Gamma distributions with shape
parameters (alpha) and rate parameters (beta) controlled within the settings list object. De-
faults have been updated with package version 1.1.3. Default priors differ for noisy/deterministic
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settings and depend on whether monowarp = TRUE. All default values are visible in the internal
deepgp:::check_settings function. These priors are designed for x scaled to [0, 1] and y scaled
to have mean 0 and variance 1. These may be adjusted using the settings input.

When w_0 = NULL, the hidden layer is initialized at x (i.e. the identity mapping). If w_0 is of
dimension nrow(x) - 1 by D, the final row is predicted using kriging. This is helpful in sequential
design when adding a new input location and starting the MCMC at the place where the previous
MCMC left off.

The output object of class dgp2 or dgp2vec is designed for use with continue, trim, and predict.

Value

a list of the S3 class dgp2 or dgp2vec with elements:

• x: copy of input matrix

• y: copy of response vector

• nmcmc: number of MCMC iterations

• settings: copy of proposal/prior settings

• v: copy of Matern smoothness parameter (v = 999 indicates cov = "exp2")

• g: vector of MCMC samples for g

• theta_y: vector of MCMC samples for theta_y (length scale of outer layer)

• theta_w: matrix of MCMC samples for theta_w (length scale of inner layer)

• tau2: vector of MLE estimates for tau2 (scale parameter of outer layer)

• w: list of MCMC samples for hidden layer w

• ll: vector of MVN log likelihood of the outer layer for reach Gibbs iteration

• time: computation time in seconds

References

Sauer, A. (2023). Deep Gaussian process surrogates for computer experiments. *Ph.D. Disserta-
tion, Department of Statistics, Virginia Polytechnic Institute and State University.*

Sauer, A., Gramacy, R.B., & Higdon, D. (2023). Active learning for deep Gaussian process surro-
gates. *Technometrics, 65,* 4-18. arXiv:2012.08015

Sauer, A., Cooper, A., & Gramacy, R. B. (2023). Vecchia-approximated deep Gaussian processes
for computer experiments. *Journal of Computational and Graphical Statistics, 32*(3), 824-837.
arXiv:2204.02904

Barnett, S., Beesley, L. J., Booth, A. S., Gramacy, R. B., & Osthus D. (2024). Monotonic warpings
for additive and deep Gaussian processes. *In Review.* arXiv:2408.01540
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Examples

# Additional examples including real-world computer experiments are available at:
# https://bitbucket.org/gramacylab/deepgp-ex/

# Booth function (inspired by the Higdon function)
f <- function(x) {

i <- which(x <= 0.58)
x[i] <- sin(pi * x[i] * 6) + cos(pi * x[i] * 12)
x[-i] <- 5 * x[-i] - 4.9
return(x)

}

# Training data
x <- seq(0, 1, length = 25)
y <- f(x)

# Testing data
xx <- seq(0, 1, length = 200)
yy <- f(xx)

plot(xx, yy, type = "l")
points(x, y, col = 2)

# Example 1: full model (nugget estimated, using continue)
fit <- fit_two_layer(x, y, nmcmc = 1000)
plot(fit)
fit <- continue(fit, 1000)
plot(fit, hidden = TRUE) # trace plots and ESS samples
fit <- trim(fit, 1000, 2)
fit <- predict(fit, xx, cores = 1)
plot(fit)

# Example 2: Vecchia approximated model (nugget estimated)
# (Vecchia approximation is faster for larger data sizes)
fit <- fit_two_layer(x, y, nmcmc = 2000, vecchia = TRUE, m = 10)
plot(fit, hidden = TRUE) # trace plots and ESS samples
fit <- trim(fit, 1000, 2)
fit <- predict(fit, xx, cores = 1)
plot(fit)

# Example 3: Vecchia approximated model, re-approximated after burn-in
fit <- fit_two_layer(x, y, nmcmc = 1000, vecchia = TRUE, m = 10)
fit <- continue(fit, 1000, re_approx = TRUE)
plot(fit, hidden = TRUE) # trace plots and ESS samples
fit <- trim(fit, 1000, 2)
fit <- predict(fit, xx, cores = 1)
plot(fit)

# Example 4: full model with monotonic warpings (nugget estimated)
fit <- fit_two_layer(x, y, nmcmc = 2000, monowarp = TRUE)
plot(fit, hidden = TRUE) # trace plots and ESS samples
fit <- trim(fit, 1000, 2)
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fit <- predict(fit, xx, cores = 1)
plot(fit)

IMSE Integrated Mean-Squared (prediction) Error for Sequential Design

Description

Acts on a gp, dgp2, or dgp3 object. Current version requires squared exponential covariance (cov =
"exp2"). Calculates IMSE over the input locations x_new. Optionally utilizes SNOW paralleliza-
tion. User should select the point with the lowest IMSE to add to the design.

Usage

IMSE(object, x_new, cores)

## S3 method for class 'gp'
IMSE(object, x_new = NULL, cores = 1)

## S3 method for class 'dgp2'
IMSE(object, x_new = NULL, cores = 1)

## S3 method for class 'dgp3'
IMSE(object, x_new = NULL, cores = 1)

Arguments

object object of class gp, dgp2, or dgp3

x_new matrix of possible input locations, if object has been run through predict the
previously stored x_new is used

cores number of cores to utilize in parallel, by default no parallelization is used

Details

Not yet implemented for Vecchia-approximated fits or Matern kernels.

All iterations in the object are used in the calculation, so samples should be burned-in. Thinning
the samples using trim will speed up computation. This function may be used in two ways:

• Option 1: called on an object with only MCMC iterations, in which case x_new must be
specified

• Option 2: called on an object that has been predicted over, in which case the x_new from
predict is used
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In Option 2, it is recommended to set store_latent = TRUE for dgp2 and dgp3 objects so latent
mappings do not have to be re-calculated. Through predict, the user may specify a mean mapping
(mean_map = TRUE) or a full sample from the MVN distribution over w_new (mean_map = FALSE).
When the object has not yet been predicted over (Option 1), the mean mapping is used.

SNOW parallelization reduces computation time but requires more memory storage.

Value

list with elements:

• value: vector of IMSE values, indices correspond to x_new

• time: computation time in seconds

References

Sauer, A., Gramacy, R.B., & Higdon, D. (2023). Active learning for deep Gaussian process surro-
gates. *Technometrics, 65,* 4-18. arXiv:2012.08015

Binois, M, J Huang, RB Gramacy, and M Ludkovski. 2019. "Replication or Exploration? Sequen-
tial Design for Stochastic Simulation Experiments." Technometrics 61, 7-23. Taylor & Francis.
doi:10.1080/00401706.2018.1469433

Examples

# Additional examples including real-world computer experiments are available at:
# https://bitbucket.org/gramacylab/deepgp-ex/

# --------------------------------------------------------
# Example 1: toy step function, runs in less than 5 seconds
# --------------------------------------------------------

f <- function(x) {
if (x <= 0.4) return(-1)
if (x >= 0.6) return(1)
if (x > 0.4 & x < 0.6) return(10*(x-0.5))

}

x <- seq(0.05, 0.95, length = 7)
y <- sapply(x, f)
x_new <- seq(0, 1, length = 100)

# Fit model and calculate IMSE
fit <- fit_one_layer(x, y, nmcmc = 100, cov = "exp2")
fit <- trim(fit, 50)
fit <- predict(fit, x_new, cores = 1, store_latent = TRUE)
imse <- IMSE(fit)

# --------------------------------------------------------
# Example 2: Higdon function
# --------------------------------------------------------
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f <- function(x) {
i <- which(x <= 0.48)
x[i] <- 2 * sin(pi * x[i] * 4) + 0.4 * cos(pi * x[i] * 16)
x[-i] <- 2 * x[-i] - 1
return(x)

}

# Training data
x <- seq(0, 1, length = 30)
y <- f(x) + rnorm(30, 0, 0.05)

# Testing data
xx <- seq(0, 1, length = 100)
yy <- f(xx)

plot(xx, yy, type = "l")
points(x, y, col = 2)

# Conduct MCMC (can replace fit_three_layer with fit_one_layer/fit_two_layer)
fit <- fit_three_layer(x, y, D = 1, nmcmc = 2000, cov = "exp2")
plot(fit)
fit <- trim(fit, 1000, 2)

# Option 1 - calculate IMSE from only MCMC iterations
imse <- IMSE(fit, xx)

# Option 2 - calculate IMSE after predictions
fit <- predict(fit, xx, cores = 1, store_latent = TRUE)
imse <- IMSE(fit)

# Visualize fit
plot(fit)
par(new = TRUE) # overlay IMSE
plot(xx, imse$value, col = 2, type = 'l', lty = 2, axes = FALSE,

xlab = '', ylab = '')

# Select next design point
x_new <- xx[which.min(imse$value)]

plot Plots object from deepgp package

Description

Acts on a gp, gpvec, dgp2, dgp2vec, dgp3, or dgp3vec object. Generates trace plots for outer log
likelihood, length scale, and nugget hyperparameters. Generates plots of hidden layers for one-
dimensional inputs or monotonic warpings. Generates plots of the posterior mean and estimated
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90% prediction intervals for one-dimensional inputs; generates heat maps of the posterior mean and
point-wise variance for two-dimensional inputs.

Usage

## S3 method for class 'gp'
plot(x, trace = NULL, predict = NULL, ...)

## S3 method for class 'gpvec'
plot(x, trace = NULL, predict = NULL, ...)

## S3 method for class 'dgp2'
plot(x, trace = NULL, hidden = NULL, predict = NULL, ...)

## S3 method for class 'dgp2vec'
plot(x, trace = NULL, hidden = NULL, predict = NULL, ...)

## S3 method for class 'dgp3'
plot(x, trace = NULL, hidden = NULL, predict = NULL, ...)

## S3 method for class 'dgp3vec'
plot(x, trace = NULL, hidden = NULL, predict = NULL, ...)

Arguments

x object of class gp, gpvec, dgp2, dgp2vec, dgp3, or dgp3vec

trace logical indicating whether to generate trace plots (default is TRUE if the object
has not been through predict)

predict logical indicating whether to generate posterior predictive plot (default is TRUE
if the object has been through predict)

... N/A

hidden logical indicating whether to generate plots of hidden layers (two or three layer
only, default is FALSE)

Details

Trace plots are useful in assessing burn-in. If there are too many hyperparameters to plot them all,
then it is most useful to visualize the log likelihood (e.g., plot(fit$ll, type = "l")).

Hidden layer plots are colored on a gradient - red lines represent earlier iterations and yellow lines
represent later iterations - to help assess burn-in of the hidden layers. Only every 100th sample is
plotted.

Examples

# See ?fit_one_layer, ?fit_two_layer, or ?fit_three_layer
# for examples
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predict Predict posterior mean and variance/covariance

Description

Acts on a gp, dgp2, or dgp3 object. Calculates posterior mean and variance/covariance over spec-
ified input locations. Optionally calculates expected improvement (EI) or entropy over candidate
inputs. Optionally utilizes SNOW parallelization.

Usage

## S3 method for class 'gp'
predict(
object,
x_new,
lite = TRUE,
return_all = FALSE,
EI = FALSE,
entropy_limit = NULL,
cores = 1,
...

)

## S3 method for class 'dgp2'
predict(
object,
x_new,
lite = TRUE,
store_latent = FALSE,
mean_map = TRUE,
return_all = FALSE,
EI = FALSE,
entropy_limit = NULL,
cores = 1,
...

)

## S3 method for class 'dgp3'
predict(
object,
x_new,
lite = TRUE,
store_latent = FALSE,
mean_map = TRUE,
return_all = FALSE,
EI = FALSE,
entropy_limit = NULL,
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cores = 1,
...

)

## S3 method for class 'gpvec'
predict(
object,
x_new,
m = object$m,
ordering_new = NULL,
lite = TRUE,
return_all = FALSE,
EI = FALSE,
entropy_limit = NULL,
cores = 1,
...

)

## S3 method for class 'dgp2vec'
predict(
object,
x_new,
m = object$m,
ordering_new = NULL,
lite = TRUE,
store_latent = FALSE,
mean_map = TRUE,
return_all = FALSE,
EI = FALSE,
entropy_limit = NULL,
cores = 1,
...

)

## S3 method for class 'dgp3vec'
predict(
object,
x_new,
m = object$m,
ordering_new = NULL,
lite = TRUE,
store_latent = FALSE,
mean_map = TRUE,
return_all = FALSE,
EI = FALSE,
entropy_limit = NULL,
cores = 1,
...
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)

Arguments

object object from fit_one_layer, fit_two_layer, or fit_three_layer with burn-
in already removed

x_new matrix of predictive input locations

lite logical indicating whether to calculate only point-wise variances (lite = TRUE)
or full covariance (lite = FALSE)

return_all logical indicating whether to return mean and point-wise variance prediction for
ALL samples (only available for lite = TRUE)

EI logical indicating whether to calculate expected improvement (for minimizing
the response)

entropy_limit optional limit state for entropy calculations (separating passes and failures), de-
fault value of NULL bypasses entropy calculations

cores number of cores to utilize in parallel

... N/A

store_latent logical indicating whether to store and return mapped values of latent layers
(two or three layer models only)

mean_map logical indicating whether to map hidden layers using conditional mean (mean_map
= TRUE) or using a random sample from the full MVN distribution (two or
three layer models only), mean_map = FALSE is not yet implemented for fits with
vecchia = TRUE

m size of Vecchia conditioning sets (only for fits with vecchia = TRUE), defaults
to the m used for MCMC

ordering_new optional ordering for Vecchia approximation, must correspond to rows of x_new,
defaults to random, is applied to all layers in deeper models

Details

All iterations in the object are used for prediction, so samples should be burned-in. Thinning the
samples using trim will speed up computation. Posterior moments are calculated using conditional
expectation and variance. As a default, only point-wise variance is calculated. Full covariance may
be calculated using lite = FALSE.

Expected improvement is calculated with the goal of minimizing the response. See Chapter 7 of
Gramacy (2020) for details. Entropy is calculated based on two classes separated by the specified
limit. See Sauer (2023, Chapter 3) for details.

SNOW parallelization reduces computation time but requires more memory storage.

Value

object of the same class with the following additional elements:

• x_new: copy of predictive input locations

• mean: predicted posterior mean, indices correspond to x_new locations
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• s2: predicted point-wise variances, indices correspond to x_new locations (only returned when
lite = TRUE)

• mean_all: predicted posterior mean for each sample (column indices), only returned when
return_all = TRUE

• s2_all predicted point-wise variances for each sample (column indices), only returned when
return-all = TRUE

• Sigma: predicted posterior covariance, indices correspond to x_new locations (only returned
when lite = FALSE)

• EI: vector of expected improvement values, indices correspond to x_new locations (only re-
turned when EI = TRUE)

• entropy: vector of entropy values, indices correspond to x_new locations (only returned when
entropy_limit is numeric)

• w_new: list of hidden layer mappings (only returned when store_latent = TRUE), list in-
dex corresponds to iteration and row index corresponds to x_new location (two or three layer
models only)

• z_new: list of hidden layer mappings (only returned when store_latent = TRUE), list index
corresponds to iteration and row index corresponds to x_new location (three layer models
only)

Computation time is added to the computation time of the existing object.

References

Sauer, A. (2023). Deep Gaussian process surrogates for computer experiments. *Ph.D. Disserta-
tion, Department of Statistics, Virginia Polytechnic Institute and State University.*

Sauer, A., Gramacy, R.B., & Higdon, D. (2023). Active learning for deep Gaussian process surro-
gates. *Technometrics, 65,* 4-18. arXiv:2012.08015

Sauer, A., Cooper, A., & Gramacy, R. B. (2023). Vecchia-approximated deep Gaussian processes
for computer experiments. *Journal of Computational and Graphical Statistics, 32*(3), 824-837.
arXiv:2204.02904

Barnett, S., Beesley, L. J., Booth, A. S., Gramacy, R. B., & Osthus D. (2024). Monotonic warpings
for additive and deep Gaussian processes. *In Review.* arXiv:2408.01540

Examples

# See ?fit_one_layer, ?fit_two_layer, or ?fit_three_layer
# for examples
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rmse Calculates RMSE

Description

Calculates root mean square error (lower RMSE indicate better fits).

Usage

rmse(y, mu)

Arguments

y response vector

mu predicted mean

Examples

# Additional examples including real-world computer experiments are available at:
# https://bitbucket.org/gramacylab/deepgp-ex/

score Calculates score

Description

Calculates score, proportional to the multivariate normal log likelihood. Higher scores indicate
better fits. Only applicable to noisy data. Requires full covariance matrix (e.g. predict with lite
= FALSE).

Usage

score(y, mu, sigma)

Arguments

y response vector

mu predicted mean

sigma predicted covariance

References

Gneiting, T, and AE Raftery. 2007. Strictly Proper Scoring Rules, Prediction, and Estimation.
Journal of the American Statistical Association 102 (477), 359-378.
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Examples

# Additional examples including real-world computer experiments are available at:
# https://bitbucket.org/gramacylab/deepgp-ex/

sq_dist Calculates squared pairwise distances

Description

Calculates squared pairwise euclidean distances using C.

Usage

sq_dist(X1, X2 = NULL)

Arguments

X1 matrix of input locations

X2 matrix of second input locations (if NULL, distance is calculated between X1 and
itself)

Details

C code derived from the "laGP" package (Robert B Gramacy and Furong Sun).

Value

symmetric matrix of squared euclidean distances

References

Gramacy, RB and F Sun. (2016). laGP: Large-Scale Spatial Modeling via Local Approximate
Gaussian Processes in R. Journal of Statistical Software 72 (1), 1-46. doi:10.18637/jss.v072.i01

Examples

x <- seq(0, 1, length = 10)
d2 <- sq_dist(x)
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trim Trim/Thin MCMC iterations

Description

Acts on a gp, gpvec, dgp2, dgp2vec, dgp3vec, or dgp3 object. Removes the specified number of
MCMC iterations (starting at the first iteration). After these samples are removed, the remaining
samples are optionally thinned.

Usage

trim(object, burn, thin)

## S3 method for class 'gp'
trim(object, burn, thin = 1)

## S3 method for class 'gpvec'
trim(object, burn, thin = 1)

## S3 method for class 'dgp2'
trim(object, burn, thin = 1)

## S3 method for class 'dgp2vec'
trim(object, burn, thin = 1)

## S3 method for class 'dgp3'
trim(object, burn, thin = 1)

## S3 method for class 'dgp3vec'
trim(object, burn, thin = 1)

Arguments

object object from fit_one_layer, fit_two_layer, or fit_three_layer
burn integer specifying number of iterations to cut off as burn-in
thin integer specifying amount of thinning (thin = 1 keeps all iterations, thin = 2

keeps every other iteration, thin = 10 keeps every tenth iteration, etc.)

Details

The resulting object will have nmcmc equal to the previous nmcmc minus burn divided by thin. It is
recommended to start an MCMC fit then investigate trace plots to assess burn-in. Once burn-in has
been achieved, use this function to remove the starting iterations. Thinning reduces the size of the
resulting object while accounting for the high correlation between consecutive iterations.

Value

object of the same class with the selected iterations removed
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Examples

# See ?fit_one_layer, ?fit_two_layer, or ?fit_three_layer
# for examples
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